Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(17): 4618-4623, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707159

RESUMO

We present a multilevel synergically controlling wavefront correction method that can apply in a slab laser system. To fully utilize the response frequency and the stroke of actuators of the single deformable mirror (DM), we design a set of multilevel wavefront correction devices to reduce the root-mean square of wavefront aberration before the DM. As the wavefront of slab geometry solid-state lasers mainly consists of fourth and longitudinally distributed aberration, such as 5th, 9th, and 14th orders of Legendre polynomials. We design a precompensating level of the aberration with a slow-drift mirror, fast-steer mirror, one-dimensional adjustable slab-aberration compensator, and beam-shaping system to reduce these orders of wavefront aberration with low spatial resolution and large stroke. As the controlling bandwidth of different devices is diverse, the coupling oscillation between the precompensating level and adaptive optics (AO) level occurs, then we develop the multilevel synergically control to address the coupling. With the precompensating level, the experimental result shows the residual wavefront aberration of the slab laser is compensated well by the AO level effectively within the compensating capability. We clean up a 9.8 kW slab laser system with the beam quality ß of far-field focus spots improved from 17.71 to 2.24 times the diffraction limit.

2.
Opt Express ; 30(5): 7664-7676, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299523

RESUMO

The geometric aberration of centered refracting double-plane symmetric optical systems (DPSOS) is investigated. For DPSOS with different defocus values in the tangential plane and the sagittal plane (astigmatic wavefront), a pair of curved reference surfaces which vanishes the quadratic terms of the optical path difference (OPD) between a general ray and a reference ray are deduced. With the curved reference surfaces, the primary (fourth-order) wave aberration function for DPSOS is calculated and analyzed, which can be used for beam shaping designs with astigmatic input wavefront, such as slab lasers and semiconductor lasers. Further, the proposed curved reference surfaces can be applied to analyze the aberrations of general DPSOS.

3.
Appl Opt ; 61(30): 8917-8925, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36607018

RESUMO

An integrated aberration-compensating module (IACM), consisting mainly of an adjustable slab-aberration compensator, a one-dimensional Shack-Hartmann wavefront sensor, and a data processor, which meet the urgent requirements of correcting the specific wavefront aberrations of a slab laser based on an off-axis stable-unstable resonator, is designed and experimentally demonstrated. Benefits include compactness, robustness, simplicity, automation, and cost-effectiveness. The particular wavefront aberrations of the 9 kW level quasi-continuous-wave Nd:YAG slab laser, which have characteristics of asymmetry, large amplitude and gradient, high spatial frequency, and low temporal frequency, were measured and theoretically analyzed. In the experiment, the wavefront aberrations of the slab laser were corrected by the IACM. At the average output power of 9 kW, the diffraction-limited factor ß was improved from 20.3 times diffraction limit (DL) to 3.6 times DL. The peak-to-valley and root-mean-square values of aberrations were reduced from 9.6 to 0.85 µm and from 2.86 to 0.18 µm within five iterations of the IACM, respectively. Moreover, The IACM is capable of maintaining the compensating surface figure after power-off.

4.
Appl Opt ; 60(31): 9672-9680, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807150

RESUMO

For reshaping aperture size and correcting low-order aberration of laser beams with large aspect ratios, a simplified analytical method is proposed to design an anamorphic refractive shaping system, which is composed of double-plane symmetric lenses. The simplified method enables performing a global study of aberrations via calculating the analytical primary wave aberration function under paraxial approximation. The aberration balance is analyzed with a three-lens laser collimating system and a compact four-lens laser expanding system. Lens bending and conic surfaces are introduced to decrease ray errors. Through the simplified analytical method, anamorphic refractive shaping systems for laser beams with large aspect ratios can be adequately analyzed and conveniently designed.

5.
Opt Lett ; 46(10): 2425-2428, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988600

RESUMO

High-power solid-state lasers with good beam quality are attracting great attention on account of their important applications in industry and military. However, the thermal effects generated in the laser host materials seriously limit power scaling and degrade the beam quality. Thermal lensing and thermally induced wavefront deformation are the main causes of the beam quality deterioration. Here we investigate the performance of a zero thermal expansion (ZTE) solid-state laser gain material. In a proof-of-principle experiment, an ${a}$-cut rod ${\rm Nd}\!:\!{{\rm YAlO}_3}$ (Nd:YAP) perovskite crystal is chosen to be the gain medium for ZTE around 180 K. The laser performance spanning the temperature range from 80 to 290 K is studied. The maximum output power and minimum threshold pump power were obtained at a temperature of 180 K. Moreover, the measured thermal focal power and peak-to-valley value of the wavefront distortion also reach a minimum at this temperature, an additional benefit from the crystal's ZTE coefficient. We envisage that these results will open a new route towards the development of high-power and high-beam-quality lasers through the use of ZTE gain materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...